Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biomed Pharmacother ; 174: 116561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593705

RESUMO

Pectin and its derivatives have been shown to modulate immune signaling as well as gut microbiota in preclinical studies, which may constitute the mechanisms by which supplementation of specific pectic polysaccharides confers protection against viral respiratory infections. In a double-blind, placebo-controlled rhinovirus (RV16) challenge study, healthy volunteers were randomized to consume placebo (0.0 g/day) (N = 46), low-dose (0.3 g/day) (N = 49) or high-dose (1.5 g/day) (N = 51) of carrot derived rhamnogalacturonan-I (cRG-I) for eight weeks and they were subsequently challenged with RV-16. Here, the effect of 8-week cRG-I supplementation on the gut microbiota was studied. While the overall gut microbiota composition in the population was generally unaltered by this very low dose of fibre, the relative abundance of Bifidobacterium spp. (mainly B. adolescentis and B. longum) was significantly increased by both doses of cRG-1. Moreover, daily supplementation of cRG-I led to a dose-dependent reduction in inter- and intra-individual microbiota heterogeneity, suggesting a stabilizing effect on the gut microbiota. The severity of respiratory symptoms did not directly correlate with the cRG-I-induced microbial changes, but several dominant groups of the Ruminococcaceae family and microbiota richness were positively associated with a reduced and hence desired post-infection response. Thus, the present results on the modulation of the gut microbiota composition support the previously demonstrated immunomodulatory and protective effect of cRG-I during a common cold infection.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Voluntários Saudáveis , Pectinas , Humanos , Pectinas/administração & dosagem , Pectinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Adulto , Método Duplo-Cego , Feminino , Adulto Jovem , Rhinovirus/efeitos dos fármacos , Pessoa de Meia-Idade , Fezes/microbiologia , Bifidobacterium/efeitos dos fármacos
2.
Nutrients ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432238

RESUMO

The human gut microbiota is characterized by large interpersonal differences, which are not only linked to health and disease but also determine the outcome of nutritional interventions. In line with the growing interest for developing targeted gut microbiota modulators, the selectivity of a carrot-derived rhamnogalacturonan I (cRG-I) was compared to substrates with demonstrated low (inulin, IN) and high selectivity (xanthan, XA), at a human equivalent dose (HED) of 1.5 g/d. The high throughput of the ex vivo SIFR® technology, validated to generate predictive insights for clinical findings, enabled the inclusion of 24 human adults. Such an unprecedented high number of samples in the context of in vitro gut microbiota modelling allowed a coverage of clinically relevant interpersonal differences in gut microbiota composition and function. A key finding was that cRG-I supplementation (already at an HED of 0.3 g/d) lowered interpersonal compositional differences due to the selective stimulation of taxa that were consistently present among human adults, including OTUs related to Bacteroides dorei/vulgatus and Bifidobacterium longum (suspected keystone species), Bacteroides thetaiotaomicron, Bifidobacterium adolescentis and butyrate-producing taxa such as Blautia sp., Anaerobutyricum hallii, and Faecalibacterium prausnitzii. In contrast, both IN and XA treatments increased interpersonal compositional differences. For IN, this followed from its low specificity. For XA, it was rather the extremely high selectivity of XA fermentation that caused large differences between 15 responders and 9 nonresponders, caused by the presence/absence of highly specific XA-fermenting taxa. While all test compounds significantly enhanced acetate, propionate, butyrate, and gas production, cRG-I resulted in a significantly higher acetate (+40%), propionate (+22%), yet a lower gas production (-44%) compared to IN. cRG-I could thus result in overall more robust beneficial effects, while also being better tolerated. Moreover, owing to its remarkable homogenization effect on microbial composition and metabolite production, cRG-I could lead to more predictable outcomes compared to substrates that are less specific or overly specific.


Assuntos
Daucus carota , Microbioma Gastrointestinal , Adulto , Humanos , Propionatos , Butiratos
3.
Microorganisms ; 11(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36985162

RESUMO

Bifidobacteria are saccharolytic bacteria that are able to metabolize a relatively large range of carbohydrates through their unique central carbon metabolism known as the "bifid-shunt". Carbohydrates have been shown to modulate the growth rate of bifidobacteria, but unlike for other genera (e.g., E. coli or L. lactis), the impact it may have on the overall physiology of the bacteria has not been studied in detail to date. Using glucose and galactose as model substrates in Bifidobacterium longum NCC 2705, we established that the strain displayed fast and slow growth rates on those carbohydrates, respectively. We show that these differential growth conditions are accompanied by global transcriptional changes and adjustments of central carbon fluxes. In addition, when grown on galactose, NCC 2705 cells were significantly smaller, exhibited an expanded capacity to import and metabolized different sugars and displayed an increased acid-stress resistance, a phenotypic signature associated with generalized fitness. We predict that part of the observed adaptation is regulated by the previously described bifidobacterial global transcriptional regulator AraQ, which we propose to reflect a catabolite-repression-like response in B. longum. With this manuscript, we demonstrate that not only growth rate but also various physiological characteristics of B. longum NCC 2705 are responsive to the carbon source used for growth, which is relevant in the context of its lifestyle in the human infant gut where galactose-containing oligosaccharides are prominent.

4.
Microorganisms ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683463

RESUMO

The human gut microbiome is currently recognized to play a vital role in human biology and development, with diet as a major modulator. Therefore, novel indigestible polysaccharides that confer a health benefit upon their fermentation by the microbiome are under investigation. Based on the recently demonstrated prebiotic potential of a carrot-derived pectin extract enriched for rhamnogalacturonan I (cRG-I), the current study aimed to assess the impact of cRG-I upon repeated administration using the M-SHIME technology (3 weeks at 3g cRG-I/d). Consistent effects across four simulated adult donors included enhanced levels of acetate (+21.1 mM), propionate (+17.6 mM), and to a lesser extent butyrate (+4.1 mM), coinciding with a marked increase of OTUs related to Bacteroides dorei and Prevotella species with versatile enzymatic potential likely allowing them to serve as primary degraders of cRG-I. These Bacteroidetes members are able to produce succinate, explaining the consistent increase of an OTU related to the succinate-converting Phascolarctobacterium faecium (+0.47 log10(cells/mL)). While the Bifidobacteriaceae family remained unaffected, a specific OTU related to Bifidobacterium longum increased significantly upon cRG-I treatment (+1.32 log10(cells/mL)). Additional monoculture experiments suggested that Bifidobacterium species are unable to ferment cRG-I structures as such and that B. longum probably feeds on arabinan and galactan side chains of cRG-I, released by aforementioned Bacteroidetes members. Overall, this study confirms the prebiotic potential of cRG-I and additionally highlights the marked consistency of the microbial changes observed across simulated subjects, suggesting the involvement of a specialized consortium in cRG-I fermentation by the human gut microbiome.

5.
Nutrients ; 13(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809720

RESUMO

The prevalence of acute respiratory infections and their impact on quality of life underlies the need for efficacious solutions that are safe, sustainable and economically viable. Polysaccharides in several (traditional) plant extracts have been shown to be immunostimulatory, and some studies suggest beneficial effects against respiratory infections. The aim of this study was to (i) identify the active polysaccharide constituents from affordable and renewable crops (bell pepper and carrot) using activity-guided fractionation, (ii) evaluate in vitro effects on innate immune responses (phagocytosis and cytokine secretion), microbiota modulation and production of short chain fatty acids, followed by (iii) the evaluation of effects of a bell pepper extract enriched for the active component in a human proof of concept study. We identified rhamnogalacturonan-I (RG-I) as the nutricophore responsible for the immunostimulatory activity with substantial structural and functional equivalence between bell pepper (bp) and carrot (c). The in vitro studies showed that bpRG-I and cRG-I comprise similar immune- and microbiota modulatory potential and the human study demonstrated that bpRG-I was well tolerated and enhanced innate immune responsiveness in vivo. This is an important step towards testing the efficacy of RG-I from bpRG-I or cRG-I in an infection trial in humans.


Assuntos
Capsicum/química , Daucus carota/química , Fatores Imunológicos/farmacologia , Pectinas/farmacologia , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Adulto , Idoso , Citocinas/metabolismo , Método Duplo-Cego , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fatores Imunológicos/isolamento & purificação , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/fisiologia , Masculino , Pessoa de Meia-Idade , Pectinas/isolamento & purificação , Fagocitose/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Estudo de Prova de Conceito , Adulto Jovem
6.
Sci Rep ; 11(1): 6060, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723346

RESUMO

An experimental human challenge model with an attenuated diarrheagenic Escherichia coli (E. coli) strain has been used in food intervention studies aimed to increase resistance to E. coli infection. This study was designed to refine and expand this challenge model. In a double-blind study, healthy male subjects were orally challenged with 1E10 or 5E10 colony-forming units (CFU) of E. coli strain E1392/75-2A. Three weeks later, subjects were rechallenged with 1E10 CFU of E. coli. Before and after both challenges, clinical symptoms and infection- and immune-related biomarkers were analyzed. Subset analysis was performed on clinically high- and low-responders. Regardless of inoculation dose, the first challenge induced clinical symptoms for 2-3 days. In blood, neutrophils, CRP, CXCL10, and CFA/II-specific IgG were induced, and in feces calprotectin and CFA/II-specific IgA. Despite clinical differences between high- and low-responders, infection and immune biomarkers did not differ. The first inoculation induced protection at the second challenge, with a minor clinical response, and no change in biomarkers. The refined study design resulted in a larger dynamic range of symptoms, and identification of biomarkers induced by a challenge with the attenuated E. coli strain E1392/75-2A, which is of value for future intervention studies. Addition of a second inoculation allows to study the protective response induced by a primary infection.Clinicaltrials.gov registration: NCT02541695 (04/09/2015).


Assuntos
Diarreia , Infecções por Escherichia coli , Escherichia coli/metabolismo , Modelos Biológicos , Adolescente , Adulto , Anticorpos Antibacterianos/sangue , Biomarcadores/sangue , Proteína C-Reativa , Quimiocina CXCL1 , Diarreia/sangue , Diarreia/microbiologia , Diarreia/fisiopatologia , Método Duplo-Cego , Escherichia coli/patogenicidade , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/fisiopatologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Complexo Antígeno L1 Leucocitário/metabolismo , Masculino , Pessoa de Meia-Idade
7.
Nutrients ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610452

RESUMO

Modulation of the gut microbiome as a means to improve human health has recently gained increasing interest. In this study, it was investigated whether cRG-I, a carrot-derived pectic polysaccharide, enriched in rhamnogalacturonan-I (RG-I) classifies as a potential prebiotic ingredient using novel in vitro models. First, digestion methods involving α-amylase/brush border enzymes demonstrated the non-digestibility of cRG-I by host-derived enzymes versus digestible (starch/maltose) and non-digestible controls (inulin). Then, a recently developed short-term (48 h) colonic incubation strategy was applied and revealed that cRG-I fermentation increased levels of health-promoting short-chain fatty acids (SCFA; mainly acetate and propionate) and lactate comparable but not identical to the reference prebiotic inulin. Upon upgrading this fermentation model by inclusion of a simulated mucosal environment while applying quantitative 16S-targeted Illumina sequencing, cRG-I was additionally shown to specifically stimulate operational taxonomic units (OTUs) related to health-associated species such as Bifidobacterium longum, Bifidobacterium adolescentis, Bacteroides dorei, Bacteroides ovatus, Roseburia hominis, Faecalibacterium prausnitzii, and Eubacterium hallii. Finally, in a novel model to assess host-microbe interactions (Caco-2/peripheral blood mononuclear cells (PBMC) co-culture) fermented cRG-I increased barrier integrity while decreasing markers for inflammation. In conclusion, by using novel in vitro models, cRG-I was identified as a promising prebiotic candidate to proceed to clinical studies.


Assuntos
Daucus carota/química , Digestão/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Pectinas/farmacologia , Prebióticos/análise , Bifidobacterium/metabolismo , Colo/metabolismo , Impedância Elétrica , Fermentação , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Prebióticos/microbiologia
8.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184252

RESUMO

Human milk oligosaccharides (HMOs) may provide health benefits to infants partly by shaping the development of the early-life intestinal microbiota. In a randomized double-blinded controlled multicentric clinical trial, healthy term infants received either infant formula (control) or the same formula with two HMOs (2'-fucosyllactose and lacto-N-neotetraose; test) from enrollment (0 to 14 days) to 6 months. Then, all infants received the same follow-up formula without HMOs until 12 months of age. Breastfed infants (BF) served as a reference group. Stool microbiota at 3 and 12 months, analyzed by 16S rRNA gene sequencing, clustered into seven fecal community types (FCTs) with marked differences in total microbial abundances. Three of the four 12-month FCTs were likely precursors of the adult enterotypes. At 3 months, microbiota composition in the test group (n = 58) appeared closer to that of BF (n = 35) than control (n = 63) by microbiota alpha (within group) and beta (between groups) diversity analyses and distribution of FCTs. While bifidobacteriaceae dominated two FCTs, its abundance was significantly higher in one (FCT BiH for Bifidobacteriaceae at high abundance) than in the other (FCT Bi for Bifidobacteriaceae). HMO supplementation increased the number of infants with FCT BiH (predominant in BF) at the expense of FCT Bi (predominant in control). We explored the association of the FCTs with reported morbidities and medication use up to 12 months. Formula-fed infants with FCT BiH at 3 months were significantly less likely to require antibiotics during the first year than those with FCT Bi. Previously reported lower rates of infection-related medication use with HMOs may therefore be linked to gut microbiota community types. (This study has been registered at ClinicalTrials.gov under registration number NCT01715246.)IMPORTANCE Human milk is the sole and recommended nutrition for the newborn infant and contains one of the largest constituents of diverse oligosaccharides, dubbed human milk oligosaccharides (HMOs). Preclinical and clinical association studies indicate that HMOs have multiple physiological functions largely mediated through the establishment of the gut microbiome. Until recently, HMOs were not available to investigate their role in randomized controlled intervention trials. To our knowledge, this is the first report on the effects of 2 HMOs on establishing microbiota in newborn infants. We provide a detailed description of the microbiota changes observed upon feeding a formula with 2 HMOs in comparison to breastfed reference infants' microbiota. Then, we associate the microbiota to long-term health as assessed by prescribed antibiotic use.


Assuntos
Antibacterianos/administração & dosagem , Fezes/microbiologia , Microbioma Gastrointestinal , Leite Humano/química , Oligossacarídeos/administração & dosagem , Bactérias/classificação , Aleitamento Materno , Método Duplo-Cego , Feminino , Humanos , Lactente , Fórmulas Infantis/análise , Recém-Nascido , Masculino , Oligossacarídeos/química , RNA Ribossômico 16S
9.
Environ Microbiol ; 20(6): 2256-2269, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29786169

RESUMO

We report streptococcal dysbiosis in acute diarrhoea irrespective of aetiology. Compared with 20 healthy local controls, 71 Bangladeshi children hospitalized with acute diarrhoea (AD) of viral, mixed viral/bacterial, bacterial and unknown aetiology showed a significantly decreased bacterial diversity with loss of pathways characteristic for the healthy distal colon microbiome (mannan degradation, methylerythritol phosphate and thiamin biosynthesis), an increased proportion of faecal streptococci belonging to the Streptococcus bovis and Streptococcus salivarius species complexes, and an increased level of E. coli-associated virulence genes. No enteropathogens could be attributed to a subgroup of patients. Elevated lytic coliphage DNA was detected in 2 out of 5 investigated enteroaggregative E. coli (EAEC)-infected patients. Streptococcal outgrowth in AD is discussed as a potential nutrient-driven consequence of glucose provided with oral rehydration solution.


Assuntos
Diarreia/etiologia , Diarreia/microbiologia , Streptococcus/isolamento & purificação , Bangladesh/epidemiologia , Estudos de Casos e Controles , Pré-Escolar , Diarreia/epidemiologia , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino , Microbiota , Virulência/genética
11.
Exp Dermatol ; 27(4): 358-365, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29380443

RESUMO

Staphylococcus aureus colonization is thought to contribute to the pathophysiology of atopic dermatitis (AD). AD patients exhibit reduced levels of cutaneous antimicrobial peptides (AMPs), which may explain their increased susceptibility to infections. Using an in vitro reconstructed human epidermis (RHE) model, we sought to determine whether topical application of a non-replicating probiotic, heat-treated Lactobacillus johnsonii NCC 533 (HT La1), could inhibit S. aureus adhesion to skin and boost cutaneous innate immunity. We found that application of HT La1 suspension to RHE samples reduced the binding of radiolabelled S. aureus by up to 74%. To investigate a potential effect of HT La1 on innate immunity, we analysed the expression of nine AMP genes, including those encoding beta defensins and S100 proteins, following topical application of HT La1 in suspension or in a daily moisturizer lotion. Analysed genes were induced by up to fourfold in a dose-dependent manner by HT La1 in suspension and by up to 2.4-fold by HT La1 in the moisturizer lotion. Finally, using ELISA and immunohistochemical detection, we evaluated the expression and secretion of the AMPs hBD-2 and psoriasin and determined that both proteins were induced by topical HT La1, particularly in the stratum corneum of the RHE. These findings demonstrate that a topically applied, non-replicating probiotic can modulate endogenous AMP expression and inhibit binding of S. aureus to an RHE model in vitro. Moreover, they suggest that a topical formulation containing HT La1 could benefit atopic skin by enhancing cutaneous innate immunity and reducing S. aureus colonization.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Epiderme/imunologia , Epiderme/metabolismo , Lactobacillus johnsonii , Probióticos/farmacologia , Proteínas S100/genética , Staphylococcus aureus/fisiologia , beta-Defensinas/genética , Administração Tópica , Epiderme/microbiologia , Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Humanos , Imunidade Inata/efeitos dos fármacos , Probióticos/administração & dosagem , Proteína A7 Ligante de Cálcio S100/genética , Proteína A7 Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo , beta-Defensinas/metabolismo
12.
Clin Med Insights Pediatr ; 11: 1179556517730018, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959122

RESUMO

To date, only few studies have assessed oral immunotherapy (OIT) for wheat allergy and often describe severe adverse reactions during therapy. We developed partially hydrolyzed wheat-based cereals (pHC), which were used in a multicenter, open-label, OIT pilot study, in immunoglobulin E-mediated wheat allergy children (NCT01332084). The primary objective of the study was to test whether wheat allergic patients tolerate pHC and primary end point was the presence or not of immediate adverse reactions to pHC during the 1-day initial escalation phase (stepwise increased doses of pHC), with evaluation of the maximum dose tolerated. Of the 9 patients enrolled in the trial, 4 discontinued OIT because of mild to severe reactions at the initial escalation phase. The 5 patients who passed the escalation phase consumed pHC daily for 1 to 6 months. One of these patients withdrew due to noncompliance, whereas the 4 others completed the study and successfully passed the wheat challenge test at the end of the study. About 60% of the adverse events were unrelated to the study product. Our study provides preliminary evidence that pHC is tolerated by a subset of wheat allergic patients. Further studies are warranted to test its efficacy as a potential therapeutic option for wheat allergic patients.

13.
Sci Rep ; 7(1): 5310, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706260

RESUMO

Inflammatory and metabolic diseases can originate during early-life and have been correlated with shifts in intestinal microbial ecology. Here we demonstrate that minor environmental fluctuations during the early neonatal period had sustained effects on the developing porcine microbiota and host-microbe interface. These inter-replicate effects appear to originate during the first day of life, and are likely to reflect very early microbiota acquisition from the environment. We statistically link early systemic inflammation with later local increases in inflammatory cytokine (IL-17) production, which could have important enteric health implications. Immunity, intestinal barrier function, host metabolism and host-microbiota co-metabolism were further modified by Bifidobacterium lactis NCC2818 supplementation, although composition of the in situ microbiota remained unchanged. Finally, our robust model identified novel, strong correlations between urinary metabolites (eg malonate, phenylacetylglycine, alanine) and mucosal immunoglobulin (IgM) and cytokine (IL-10, IL-4) production, thus providing the possibility of the development of urinary 'dipstick' tests to assess non-accessible mucosal immune development and identify early precursors (biomarkers) of disease. These results have important implications for infants exposed to neonatal factors including caesarean delivery, antibiotic therapy and delayed discharge from hospital environments, which may predispose to the development of inflammatory and metabolic diseases in later life.


Assuntos
Bifidobacterium animalis/crescimento & desenvolvimento , Exposição Ambiental , Microbioma Gastrointestinal , Probióticos/administração & dosagem , Animais , Animais Recém-Nascidos , Intervenção Educacional Precoce , Imunidade nas Mucosas , Doenças Metabólicas/prevenção & controle , Suínos , Doenças dos Suínos/prevenção & controle , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle
14.
Clin Cosmet Investig Dermatol ; 10: 249-257, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28721083

RESUMO

OBJECTIVE: Staphylococcus aureus dominates the skin microbiota in patients with atopic dermatitis (AD), with bacterial loads correlating with disease severity. The aim of this exploratory study was to investigate the effect of a cosmetic lotion containing heat-treated Lactobacillus johnsonii NCC 533 (HT La1) on S. aureus colonization in AD patients. METHODS: This open-label, multicenter study was performed in AD patients in Germany. First, detection of S. aureus was performed in all patients using the swab or scrub-wash method of sampling, followed by quantitative culture or quantitative polymerase chain reaction. Repeatability and reproducibility of all method combinations were evaluated to select the best combination of sampling and quantification. Second, a lotion containing HT La1 was applied to lesional skin twice daily for 3 weeks. Scoring using local objective SCORing Atopic Dermatitis (SCORAD), measurement of S. aureus load, and lesional microbiome analysis were performed before and after the 3-week treatment period. RESULTS: Thirty-one patients with AD were included in the study. All sampling and quantification methods were found to be robust, reproducible, and repeatable for assessing S. aureus load. For simplicity, a combination of swab and quantitative polymerase chain reaction was chosen to assess the efficacy of HT La1. Following application of a lotion containing HT La1 to AD lesions for 3 weeks, a reduction in S. aureus load was observed in patients, which correlated with a decrease in local objective SCORAD. Interestingly, high baseline skin concentrations of S. aureus were associated with good responses to the lotion. CONCLUSION: This study demonstrated that the application of a lotion containing HT La1 to the lesional skin of patients with AD for 3 weeks controlled S. aureus colonization and was associated with local clinical improvement (SCORAD). These findings support further development of topical treatments containing heat-treated nonreplicating beneficial bacteria for patients with AD.

15.
PLoS One ; 12(3): e0173004, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249045

RESUMO

Gut barrier function is key in maintaining a balanced response between the host and its microbiome. The microbiota can modulate changes in gut barrier as well as metabolic and inflammatory responses. This highly complex system involves numerous microbiota-derived factors. The gut symbiont Akkermansia muciniphila is positively correlated with a lean phenotype, reduced body weight gain, amelioration of metabolic responses and restoration of gut barrier function by modulation of mucus layer thickness. However, the molecular mechanisms behind its metabolic and immunological regulatory properties are unexplored. Herein, we identify a highly abundant outer membrane pili-like protein of A. muciniphila MucT that is directly involved in immune regulation and enhancement of trans-epithelial resistance. The purified Amuc_1100 protein and enrichments containing all its associated proteins induced production of specific cytokines through activation of Toll-like receptor (TLR) 2 and TLR4. This mainly leads to high levels of IL-10 similar to those induced by the other beneficial immune suppressive microorganisms such as Faecalibacterium prausnitzii A2-165 and Lactobacillus plantarum WCFS1. Together these results indicate that outer membrane protein composition and particularly the newly identified highly abundant pili-like protein Amuc_1100 of A. muciniphila are involved in host immunological homeostasis at the gut mucosa, and improvement of gut barrier function.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Mucosa Intestinal/imunologia , Verrucomicrobia/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Verrucomicrobia/patogenicidade
16.
Br J Nutr ; 117(1): 93-107, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28102115

RESUMO

Intestinal barrier integrity is a prerequisite for homeostasis of mucosal function, which is balanced to maximise absorptive capacity, while maintaining efficient defensive reactions against chemical and microbial challenges. Evidence is mounting that disruption of epithelial barrier integrity is one of the major aetiological factors associated with several gastrointestinal diseases, including infection by pathogens, obesity and diabetes, necrotising enterocolitis, irritable bowel syndrome and inflammatory bowel disease. The notion that specific probiotic bacterial strains can affect barrier integrity fuelled research in which in vitro cell lines, animal models and clinical trials are used to assess whether probiotics can revert the diseased state back to homeostasis and health. This review catalogues and categorises the lines of evidence available in literature for the role of probiotics in epithelial integrity and, consequently, their beneficial effect for the reduction of gastrointestinal disease symptoms.


Assuntos
Enteropatias/prevenção & controle , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Probióticos/farmacologia , Animais , Humanos
17.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G171-G193, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908847

RESUMO

The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.


Assuntos
Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/fisiologia , Homeostase/fisiologia , Microbiota/fisiologia , Animais , Gastroenteropatias/microbiologia , Trato Gastrointestinal/microbiologia , Humanos
18.
Clin Transl Gastroenterol ; 7(10): e196, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27763627

RESUMO

The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed.

20.
ISME J ; 10(1): 145-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26066712

RESUMO

The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farm piglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by (1)H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide 'metabolic rescue' for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation.


Assuntos
Microbioma Gastrointestinal , Intestinos/microbiologia , Suínos/microbiologia , Animais , Colo/crescimento & desenvolvimento , Colo/metabolismo , Colo/microbiologia , Feminino , Humanos , Mucosa Intestinal/metabolismo , Intestinos/crescimento & desenvolvimento , Fenótipo , Suínos/crescimento & desenvolvimento , Suínos/fisiologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA